Place
1. **Copy:** ‘A place is a name we give to a location or locality on the Earth’s surface’.
2. Explain the difference between absolute and relative location. Give examples of each from this region.
3. Why is a sense of place greater for a person living there than to someone from elsewhere?
4. How do we place a value natural places?
5. Why might an earthquake occurring in a thinly populated desert region not be seen as a disaster?
6. How does the potential for a hazard event, such as a bushfire, help shape people’s view of a place?
7. Examine figure 1.3
 a. Describe the difference in runoff discharge between natural and urbanised streams.
 b. Account for the higher runoff discharge in urbanised streams.
 c. Explain how increased urbanisation causes changes in the potential for flooding in urban/city areas.
8. Examine the geographical data in figures 1.4 and 1.5.
 a. Comment on the likely impacts of the Christchurch earthquake on residents of the city in terms of their sense of place.
 b. Discuss how Christchurch is changing as a place because of the earthquake event in 2011.

Scale (always involves a number)
1. Define the general term scale.
2. Define the following scales used by geographers: - local, national, international and global.
3. Small scale maps tend to show whereas large scale maps tends to show (finish)
4. Study figure 1.6.
 a. Which of the 2 maps is the larger scale, and why?
 b. Calculate the dimensions of the 2009 Black Saturday Fires i.e. east to west and north to south?
5. Although the 2015 Nepalese earthquake was localised, its impact was felt on a global scale. Explain why this was the case.

Distance
1. What is distance in its simplest form?
2. How can distance define where things are in space?
3. What is relative distance?
4. How might distance be applied to studying natural hazards or disasters?
5. Using figure 1.9: -
 a. Calculate the approximate distance travelled by cane toads from their place of introduction in Port Macquarie to their furthest location in Australia.
 b. Using the relative distance shown in years, calculate the approximate speed of change in the distribution of cane toads in Australia.

Distribution
1. Distribution involves (finish)
2. Explain the idea that distribution can be seen over time and space.
3. Refer to figure 1.10
 a. Describe the distribution of confirmed Ebola cases as of March 2015.
 b. How did the distribution of Ebola cases change over time?
 c. Comment on the relationship between the number of confirmed cases and the increase in numbers over 21 days?

Movement
1. What’s involved in the geographic concept of movement?
2. Using examples, explain how movement applies to hazards and disasters.
3. Comment on how movement is linked to other geographic concepts.
4. Study figure 1.11: -
 a. How has movement been depicted overall in Figure 1.11?
 b. For each diagram, identify which movement is involved and the resultant hazard caused by the movement.
5. What type of movement is shown in figure 1.9? How is movement depicted on this map?

Region
1. What is a region and how can regions be defined?
2. Identify and name four regions in Australia. Choose one and explain what makes it a region.
3. How is scale linked to the concept of a region?
4. Refer to the data in figure 1.13,
 a. Rank the African countries affected by Ebola according to their frequency of outbreaks from 1976.
 b. Identify and describe the geographic characteristics of the region defined by the top three ranked countries.
5. Compare the region in b. above with the region defined by the 2014-15 Ebola outbreak. What appears to have changed?

Change
1. Change refers to ... (finish)
2. Explain how change can be spatial and place related.
3. How can change be non-spatial and of interest to geographers?
4. Give an example of a ‘varying occurrence of something’ over time.
5. Provide two examples that reflect each of the following geographical changes - movement, size distribution and density. For each example provide a location and its rate of change.

6. Use figure 1.14 to describe the physical and human changes you observe as a result of the tsunami that struck Japan in 2011. How quickly did this change take place?

7. Describe the relationship between rates of change and the occurrence of two disasters shown in this chapter.

Process
1. Copy: ‘Processes are forces that help shape the earth’s surface. They include natural phenomena such as erosion/transportation/deposition by wind or water or ice, the water cycle, El Nino, tectonic activity, plant colonisation, climatic conditions etc. as well as changes to the landscape initiated by human activity such as urban renewal, deforestation and urbanisation.’

2. Refer to figure 1.11. Identify and list the process involved in the normal ocean and atmospheric circulation diagram compared to that of El Nino/El Nina Southern Oscillation diagrams.

Spatial Association (This goes with that …)
1. In your own words, what does the term spatial association mean?
2. Describe an example where strong spatial association exists.
3. Apart from establishing the degree of spatial association between two or more phenomena in the same space, what else must we as geographers do?

4. Refer to Figure 1.15. Describe the processes which result in the occurrence of earthquakes and the formation of volcanoes i.e. plate collision, plate separation and subduction. {you will need to research these}

Sustainability
1. Give a suitable definition of the concept of ‘sustainability’.

2. Using real-world examples, explain how human activity can magnify the effects of natural hazards and have lasting environmental consequences.

3. Refer to figures 1.16 and 1.17. Construct a table to outline the impact that ‘rabbits’ and ‘Northern Pacific Sea Star’ are having on the Australian environment, ecosystems (specific plant/animal/climatic regions) and the economy. You will need to research each topic. Two useful sites are.

4. Read the accompanying newspaper extract ‘Toxic mud reaches the Atlantic’.
 a) Identify and list all parts of the bio-physical environment that were changed or polluted as a result of this disaster.
 b) Outline the impact that this man-made disaster has had on the Doce River eco-system.
c) Explain the nature and scale of the impact on both people and the economy of this region in Brazil.

d) Research and identify all aspects of the mining operation that were unsustainable. {watch the video on the disaster from The Age website}